Enhancing deep learning model explainability in brain tumor datasets using post-heuristic approaches
Διπλωματική εργασία--Πανεπιστήμιο Μακεδονίας, Θεσσαλονίκη, 2024.
Πρώτος συγγραφέας: | Πασβάντης, Κωνσταντίνος |
---|---|
Επόπτης Καθηγητής: | Πρωτοπαπαδάκης, Ευτύχιος |
Μορφή: | Electronic Thesis or Dissertation |
Γλώσσα: | English |
Άλλες Λεπτομέρειες Έκδοσης: |
Πανεπιστήμιο Μακεδονίας,
2024
|
Τμήμα: | Πρόγραμμα Μεταπτυχιακών Σπουδών στην Τεχνητή Νοημοσύνη και Αναλυτική Δεδομένων |
Θέματα/Λέξεις Κλειδιά: | |
Διαθέσιμο Online: |
http://dspace.lib.uom.gr/handle/2159/30853 |
id |
dspace-2159-30853 |
---|---|
recordtype |
dspace |
spelling |
dspace-2159-308532024-07-05T00:04:23Z Enhancing deep learning model explainability in brain tumor datasets using post-heuristic approaches Πασβάντης, Κωνσταντίνος Πρωτοπαπαδάκης, Ευτύχιος Πρόγραμμα Μεταπτυχιακών Σπουδών στην Τεχνητή Νοημοσύνη και Αναλυτική Δεδομένων Computer Vision Health Informatics The application of deep learning models in medical diagnosis has showcased considerable efficacy in recent years. Nevertheless, a notable limitation involves the inherent lack of explainability during decision-making processes. This study addresses such a constraint, by enhancing the interpretability robustness. The primary focus is directed towards refining the explanations generated by the LIME Library and LIME image explainer. This is achieved throuhg post-processing mechanisms, based on scenario-specific rules. Multiple experiments have been conducted using publicly accessible datasets related to brain tumor detection. Our proposed post-heuristic approach demonstrates significant advancements, yielding more robust and concrete results, in the context of medical diagnosis. Διπλωματική εργασία--Πανεπιστήμιο Μακεδονίας, Θεσσαλονίκη, 2024. 2024-07-04T09:42:54Z 2024-07-04T09:42:54Z 2024-07-04T09:42:54Z 2024 Electronic Thesis or Dissertation http://dspace.lib.uom.gr/handle/2159/30853 en http://creativecommons.org/licenses/by-sa/4.0/ Αναφορά Δημιουργού - Παρόμοια Διανομή 4.0 Διεθνές Πανεπιστήμιο Μακεδονίας |
institution |
University of Macedonia |
collection |
DSpace collection |
language |
English |
topic |
Computer Vision Health Informatics |
spellingShingle |
Computer Vision Health Informatics Πασβάντης, Κωνσταντίνος Enhancing deep learning model explainability in brain tumor datasets using post-heuristic approaches |
description |
Διπλωματική εργασία--Πανεπιστήμιο Μακεδονίας, Θεσσαλονίκη, 2024. |
abstract |
The application of deep learning models in medical diagnosis has showcased considerable efficacy in recent years. Nevertheless, a notable limitation involves the inherent lack of explainability during decision-making processes. This study addresses such a constraint, by enhancing the interpretability robustness. The primary focus is directed towards refining the explanations generated by the LIME Library and LIME image explainer. This is achieved throuhg post-processing mechanisms, based on scenario-specific rules. Multiple experiments have been conducted using publicly accessible datasets related to brain tumor detection. Our proposed post-heuristic approach demonstrates significant advancements, yielding more robust and concrete results, in the context of medical diagnosis. |
advisor |
Πρωτοπαπαδάκης, Ευτύχιος |
format |
Electronic Thesis or Dissertation |
author |
Πασβάντης, Κωνσταντίνος |
author-letter |
Πασβάντης, Κωνσταντίνος |
department |
Πρόγραμμα Μεταπτυχιακών Σπουδών στην Τεχνητή Νοημοσύνη και Αναλυτική Δεδομένων |
title |
Enhancing deep learning model explainability in brain tumor datasets using post-heuristic approaches |
title_short |
Enhancing deep learning model explainability in brain tumor datasets using post-heuristic approaches |
title_full |
Enhancing deep learning model explainability in brain tumor datasets using post-heuristic approaches |
title_fullStr |
Enhancing deep learning model explainability in brain tumor datasets using post-heuristic approaches |
title_full_unstemmed |
Enhancing deep learning model explainability in brain tumor datasets using post-heuristic approaches |
title_sort |
enhancing deep learning model explainability in brain tumor datasets using post-heuristic approaches |
publisher |
Πανεπιστήμιο Μακεδονίας |
publishDate |
2024 |
url |
http://dspace.lib.uom.gr/handle/2159/30853 |
_version_ |
1828238902378364928 |
score |
13,073021 |